Answer (1): Time and date from a shadow?

 Can you actually get the time and date from just a shadow? 


This isn't the post I thought I was going to make. As you'll see, this has turned out to be much more complicated than I thought it would be.  So I'm going to do this as a multi-part post--I'll show you my working-out process.  I'll show you what worked, what didn't, and what I learned along the way.  Hope you'll stick with me through the next couple of posts until we get this Challenge solved.  Hope you'll find this as fascinating as I do!  


-----------


In our last Challenge we met the SkyTree in Tokyo, Japan.  (That is, 東京スカイツリー, Tōkyō Sukaitsurī) It's a very tall tower in Tokyo that's known around the world as a landmark.    

And we saw its mighty shadow, extending from the base of the tower to just beyond the bridge over the Sumida river.  


Our Challenge was simple: 

1.  What day and time-of-day was this photograph taken?  

As always, I'm going to start with a simple, fairly open-ended query: 

     [ how to find time and date from shadow ] 

which leads to a bunch of fascinating web pages, each of which tells us how to do exactly this.  (Along with lots of details about the geometry and astronomy involved.)  

A really useful summary of this calculation can be found on the Instructables site at "Time and Date of Satellite Maps."  On this page there's a summary of how and why you can make this calculation.  

When I wrote this Challenge, I knew about this "Time and Date of Satellite Maps" page and the computations involved.  I figured that I'd just do the math, compute the answer, and call it a day.  It turned out to be more complicated than that.  But here's what I did first....   

TL;DR - over the course of the year, the sun moves throughout the sky on a figure 8 path called an analemma.  If there was a tall tower standing, you'd see the tip of the tower trace the analemma on the ground.   Like this: 





Or, if you track the sun across the sky, you'll see that every day is just a bit different.  The sun rises in a slightly different place each day, takes a gentle curve across the sky, and sets in a slightly different place.   

P/C Petapixel showing the sun's path across the sky each day. Filmed in Scotland using very clever pinhole cameras (the article is worth reading).